Pediatric Abdominal Radiographs: Common and Less Common Errors

Sarah J. Menashe1
Ramesh S. Iyer
Marguerite T. Parisi
Randolph K. Otto
Edward Weinberger
A. Luana Stanescu

OBJECTIVE. Interpretation of abdominal radiographs of children benefits from a firm knowledge of the congenital anomalies and pathologies unique to this patient population, leveraged by a systematic approach. Interpretive errors place the patients and their families at risk for a delay in diagnosis, unnecessary additional imaging, a potential increase in the radiation burden, and possible psychologic trauma.

CONCLUSION. In this article, we describe the common and uncommon potential pitfalls in pediatric abdominal radiography, using several of our own interpretive errors as a framework while providing teaching points to help avoid these mistakes.

The concept that medical errors contribute to patient morbidity and mortality was widely substantiated by the Institute of Medicine in 1999, when its report To Err Is Human: Building a Safer Health System was published [1]. The numbers quoted at the time seemed staggering, but they have continued to increase, with medical errors most recently reported as the third leading cause of death in the United States [2].

As in all fields of medicine, errors in radiology are often multifactorial, may be perceptual (i.e., the finding was not seen), may be caused by insufficient characterization (i.e., the finding was identified but its significance was not appropriately recognized), or may represent a failure in communication (i.e., the finding was accurately reported but the appropriate channels of communication for notifying the provider were not used), among many other causes [3, 4]. Growing awareness of imaging errors has led to an increased focus on identifying, understanding, and avoiding these mistakes, not only in the radiology literature as a whole but, more recently, in pediatric radiology as well [3, 4–6].

At our institution, as part of a rigorous quality assurance program, we use various peer review strategies to identify such errors and promote ongoing continuous education and feedback [7, 8]. These strategies include monthly peer review conferences and peer review scorecards that assist in closing the feedback loop to interpreting radiologists.

Although peer review methods or scorecards are critically important as educational tools, a more extended discussion of these tools is beyond the intended scope of this article. Instead, using a case-based approach, we offer examples of some of our own “missed” cases to illustrate common and less common errors that may occur, specifically when interpreting abdominal radiographs of pediatric patients.

The Abdomen

Causes of abdominal pathology in the pediatric population can differ significantly from those in the adult population, and they are further confounded by the inability of a young patient to adequately communicate or localize symptoms. Differential considerations in the pediatric subset also vary among age groups, where neonates, infants, and young children can have distinctly different causes of abdominal pathology. Imaging evaluation may consequently require any combination of advanced techniques, including ultrasound, fluoroscopy, CT, and MRI. Nevertheless, the most commonly performed initial examination remains the abdominal radiograph. Despite its widespread use, particularly in the emergency department, the sensitivity and specificity of abdominal radiography are quite variable [9–11]. Pitfalls may arise because of difficulties in obtaining patient cooperation or because of the use of an image acquisition technique that is inadequate for the size of the patient’s body.
Such pitfalls may occasionally ensnare even the most seasoned pediatric radiologist [7]. Therefore, having a good command of common and less common pediatric abdominal pathologies and their associated imaging findings is essential when assessing abdominal radiographs.

Technique and Approach

Historically, both supine and upright views of the abdomen were routinely acquired in the setting of acute abdominal symptoms. Recent heightened awareness of radiation and its potential long-term consequences has caused radiologists and clinicians alike to rethink the necessity of obtaining multiple views in all clinical contexts. For example, a single supine anteroposterior abdominal radiograph is often all that is necessary to characterize suspected constipation, which is a common cause of pediatric abdominal pain. If obstruction, perforation, or some other pathology is suspected, additional projections may be appropriate, and they may include left lateral decubitus or cross-table lateral projections, for young children, or more conventional supine and upright views, for older pediatric patients [12]. An anteroposterior image should include the lung bases and the diaphragm superiorly, extend to the inferior pubic rami inferiorly, and encompass both abdominal walls along the lateral edge. A thorough interpretation algorithm includes careful scrutiny of the bowel gas pattern, assessment for the presence of abdominal calcifications or mass effect, solid-organ evaluation, identification of extraluminal collections of gas or fluid, and attention to osseous structures [10, 12].

Bowel Gas Pattern

There is significant heterogeneity in the normal bowel gas pattern seen among adults and children alike, in part related to the variability of air and the fluid-filled small bowel. Additional variation will be present in healthy neonates on the first day of life, when the bowel gas pattern is dependent on swallowed air moving distally from the stomach to the small intestine to the sigmoid colon, normally over 8–9 hours [13]. Persistent displacement of bowel loops, unusual distribution of bowel gas, or the presence of dilated gas-filled bowel loops may indicate underlying pathology [14].

Case 1

Case 1 involved a 2-year-old girl with a 4- to 5-month history of intermittent fevers and a 1-week history of abdominal distention (Fig. 1).

Discussion—An abdominal mass identified in the first year of life is most commonly of renal origin and has benign causes, such as hydronephrosis or multicystic dysplastic kidney, which are usually detected on prenatal ultrasound. During the ensuing decade of life, however, primary tumors of the kidney become more common in children, with Wilms tumor reported to be the most common abdominal malignancy in childhood [15], followed by neuroblastoma. Clear cell sarcoma of the kidney, historically known as bone metastasizing renal tumor of infancy, represents less than 4–5% of primary renal tumors and typically occurs before the age of 4 years. Commonly presenting as an abdominal mass and often indistinguishable from Wilms tumor on imaging, clear cell sarcoma is more aggressive and is associated with higher mortality and relapse rates [16].

Although an overall paucity of bowel gas or gasless abdomen has been reported in association with intubation in neonates [17], observation of decreased or displaced bowel gas in an infant or child should prompt careful scrutiny of the adjacent soft tissues for any abnormality.

Teaching point—Abdominal radiographs that show persistent displacement of bowel loops on multiple views should raise the concern for the presence of an abdominal mass.

Case 2

Case 2 involved a 4-week-old boy (born prematurely at 27 weeks of gestation) with a history of heart block requiring a pacemaker and respiratory failure. The patient presented with increased fussiness (Fig. 2).

Discussion—In infants and children, inguinal hernias are one of the most common reasons for surgery. This is especially true for premature infants, for whom both the incidence and risk of an incarcerated hernia are the highest [18–20]. Inguinal hernias are more common in male patients, with reported ratios ranging from 3:1 to 10:1 [21]. In premature infants, timing of the surgical intervention is controversial and is dependent on gestational age, birth weight, the risk of incarceration, and the underlying health of the infant [19].

An inguinal hernia may present clinically as scrotal swelling or a groin mass with or without evidence of bowel obstruction. On properly performed abdominal radiographs, gas-filled bowel loops may be seen herniating below the inguinal ligament, sometimes with additional findings of bowel distention. The recognition and description of the hernia are important because a delay in diagnosis can lead to an increased risk of incarceration with obstruction and perforation [12].

Evaluation of bowel obstruction in children can be difficult because bowel loop size can vary depending on the age of the child; for example, a normally distended bowel loop in a toddler could represent significant bowel dilatation in a premature infant. In 1980, Edwards [22] proposed using fixed bony landmarks to allow more accurate assessment of bowel dilatation, regardless of patient size. Bowel loops were considered to be normal in diameter when measuring less than the combined height of the L1 and L2 vertebral bodies, including the intervening disk space. Once dilated bowel loops are identified, one should search for clues to their underlying cause, starting first with whether the obstruction is proximal (indicated by the presence of few loops present) or distal (indicated by the presence of multiple loops). Bowel obstructions in pediatric patients may be secondary to a number of causes, including adhesions, appendicitis, intussusception, inguinal hernia, malrotation with midgut volvulus and Meckel diverticulum (easily remembered using the mnemonic AAHIMM), among numerous other causes [23–25].

Teaching point—Inguinal hernias are an important cause of bowel obstruction in children. The presence of gas-filled bowel below the inguinal canal should be documented, even in the absence of signs of obstruction. Also, when a bowel obstruction is suspected in a child, it is important to try to characterize the level of obstruction, generally proximal versus distal.

Case 3

Case 3 involved a 21-year-old woman with a history of acute lymphoblastic leukemia after bone marrow transplantation who presented with fever and cough (Fig. 3).

Discussion—Pneumatosis intestinalis (PI) is defined as the presence of gas within the bowel wall. Although visible on a variety of imaging modalities, it is often first detected on abdominal radiography [26, 27]. Intramural gas may be focal or diffuse, and on radiography it appears as linear, curvilinear, or rounded bubbly lucencies [28]. In neonates, PI has classically been associated with necrotizing enterocolitis, which is often a life-threatening and surgical emergency. However, in older pediatric patients, the causes and...
TABLE 1: Risk Factors for Pneumatosis in Pediatric Patients

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transplantation</td>
<td>Solid organ, bone marrow</td>
</tr>
<tr>
<td>Immunosuppression</td>
<td>AIDS, steroid use, chemotherapy</td>
</tr>
<tr>
<td>Short-gut syndrome</td>
<td>Volvulus, hypertrophic pyloric stenosis, constipation</td>
</tr>
<tr>
<td>Infection</td>
<td>Asthma, cystic fibrosis</td>
</tr>
<tr>
<td>Obstruction</td>
<td>Systemic lupus erythematosus, juvenile dermatomyositis, juvenile idiopathic arthritis</td>
</tr>
<tr>
<td>Chronic pulmonary disease</td>
<td></td>
</tr>
<tr>
<td>Rheumatologic and collagen vascular diseases</td>
<td></td>
</tr>
<tr>
<td>Congenital heart disease</td>
<td>Leukemia and lymphoma</td>
</tr>
<tr>
<td>Malignancy</td>
<td>Steroids and chemotherapy</td>
</tr>
<tr>
<td>Drugs</td>
<td></td>
</tr>
</tbody>
</table>

Note—Data are from [26, 27, 31, 32].

associated clinical conditions are quite varied, ranging from potentially life-threatening to benign [26, 27, 29–31] (Table 1).

Among older children, PI is often found in those who are immunosuppressed as a result of chemotherapy, solid-organ or bone marrow transplantation, or treatment for autoimmune diseases. Obstructive pulmonary disease, congenital heart disease, and short-gut syndrome are other common predisposing conditions [29, 32]. When PI is identified, it is important to document its location, extent, and severity as well as the presence of any more ominous secondary findings, including the presence of portal venous gas or frank pneumoperitoneum. However, it is important to note that among older pediatric patients, findings of PI are not specific for a particular cause or even indicative of disease severity. Clinical correlation is necessary to appropriately contextualize the findings [31, 32].

In neonates with pneumatosis and necrotizing enterocolitis, treatment and indications for surgical intervention are largely standardized [28]. However, in older infants and children, management of pneumatosis is dependent on the cause, ranges from conservative bowel rest and antibiotics to emergent surgery, and is determined in large part on the basis of clinical status rather than on any one particular imaging finding [26, 31].

Teaching point—Extraluminal gas in a bubbly or curvilinear pattern along the bowel wall representing pneumatosis may occur for many reasons, not all of which are worrisome. Correlation with clinical context (e.g., a preterm neonate with bloody stools or a teenager with leukemia and immunosuppression) is particularly important when detecting pneumatosis.

Peritoneal Cavity

The peritoneal cavity is a potential space found between the visceral peritoneum, which lines the visceral organs, and the parietal peritoneum, which lines the abdominal wall. Abnormal accumulation of air or fluid within this potential space can occur in pediatric patients for a number of reasons. Familiarity with the numerous signs of peritoneal pathology on abdominal radiography is important for the appropriate diagnosis and management of these patients.

Case 4

Case 4 involved a 6-week-old boy who underwent a Blalock-Taussig shunt procedure for tetralogy of Fallot. Increased irritability raised clinical concern for possible pneumatosis related to necrotizing enterocolitis, given the patient’s recent cardiac surgery (Fig. 4).

Discussion—Pneumoperitoneum may have a wide variety of causes, ranging from iatrogenic causes, such as recent abdominal surgery or endoscopic procedures, to life-threatening hollow viscus perforation [33]. The radiographic findings may be subtle and easily overlooked, particularly on a supine radiograph or for a patient for whom clinical suspicion is low. Familiarity with the varied manifestations of free intraperitoneal air on abdominal or chest radiographs is vital for successful identification [34]. When considering the possibility of pneumoperitoneum, it is helpful to organize the radiographic signs into broad categories, including those that are bowel related and those that are categorized as belonging to other patterns [34] (Table 2).

When a patient is imaged in the supine position, air within the peritoneal cavity will preferentially accumulate in a nondependent fashion under the central tendon of the diaphragm and median subphrenic space. Air in this region may be the only manifestation of minimal pneumoperitoneum. When seen as an arcuate lucency caudal to the heart, it is known as the cupola sign [33, 35]. More frequently, free air is indicated by the presence of a hyperlucent liver (i.e., a hyperlucent liver sign) and rounded or oval lucencies projecting over the liver (i.e., superior oval sign) [34].

If there is high clinical suspicion or radiographic uncertainty regarding the presence of free air on initial images, images in the upright and left lateral decubitus views should be obtained. Ideally, these images should be obtained after the patient has been in the erect or left lateral decubitus position for several minutes, enabling the detection of as little as 1–2 mL of free air. With such attention to technique, upright and left lateral decubitus radiographs have sensitivities greater than 85% and 96%, respectively [33, 34].

Teaching point—Familiarity with the common locations and manifestations of pneumoperitoneum is requisite, particularly in critically ill children. As a rule of thumb, the soft-tissue attenuation of the liver on a radiograph of a patient in a supine position should be homogeneous. The presence of sharp interfaces delineating central regions of hypodensity should raise concern for pneumoperitoneum. Artifacts from overlaid devices that cannot be removed at the time of imaging may occasionally obscure pneumoperitoneum.

Case 5

Case 5 involved an 11-year-old girl with abdominal distention and lethargy that occurred 1 month after the patient underwent total colectomy for ulcerative colitis (Fig. 5).

A companion case involved a 13-year-old girl with a history of constipation and suprapubic pain (Fig. 6).

Discussion—Ascites, or the abnormal accumulation of fluid in the peritoneal cavity, has numerous causes in infants and children [36, 37]. Possible radiographic signs are similarly abundant and are specific, although variably sensitive, often requiring large amounts of ascites to be present for a diagnosis to be made. Signs include generalized haziness of the abdomen, medial displace-
TABLE 2: Signs of Pneumoperitoneum

<table>
<thead>
<tr>
<th>Sign</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowel-related signs</td>
<td>Visualization of both sides of bowel wall; requires large amounts of pneumatocoele to be visible</td>
</tr>
<tr>
<td>Rigler sign</td>
<td>Free air among three adjoining bowel loops, or two bowel loops and adjacent peritoneum</td>
</tr>
<tr>
<td>Triangle sign</td>
<td>Free air among three adjoining bowel loops, or two bowel loops and adjacent peritoneum</td>
</tr>
<tr>
<td>Right upper quadrant signs</td>
<td>Visualization of extraperitoneal portion of the ligamentum teres</td>
</tr>
<tr>
<td>Hyperlucent liver</td>
<td>Visualizes the extrahepatic portion of the ligamentum teres and adjacent peritoneum</td>
</tr>
<tr>
<td>Anterior superior oval</td>
<td>Fissure for ligamentum teres</td>
</tr>
<tr>
<td>Fissure for ligamentum teres</td>
<td>Ottawa sign</td>
</tr>
<tr>
<td>Doge cap</td>
<td>Ottawa sign</td>
</tr>
<tr>
<td>Hepatic edge</td>
<td>Ottawa sign</td>
</tr>
<tr>
<td>Dolphin sign</td>
<td>Ottawa sign</td>
</tr>
<tr>
<td>Peritoneal ligament related signs</td>
<td>Ottawa sign</td>
</tr>
<tr>
<td>Falciform ligament</td>
<td>Ottawa sign</td>
</tr>
<tr>
<td>Inverted V</td>
<td>Ottawa sign</td>
</tr>
<tr>
<td>Urachus</td>
<td>Ottawa sign</td>
</tr>
<tr>
<td>Other</td>
<td>Ottawa sign</td>
</tr>
<tr>
<td>Football</td>
<td>Ottawa sign</td>
</tr>
<tr>
<td>Cupola</td>
<td>Ottawa sign</td>
</tr>
<tr>
<td>Subphrenic lucency</td>
<td>Ottawa sign</td>
</tr>
</tbody>
</table>

Note—Data are from [34, 64].

Calcifications

Although there are many common and incidental sources of calcifications in adult patients (e.g., arteriolar calcification, phleboliths, and cholesterol), the same cannot be said for pediatric patients. As such, the search for abnormal calcifications on radiographs is particularly important when assessing infants and children, in whom etiological factors range from benign renal calculi to tumor calcifications, such as those that occur in neuroblastoma [38].

Case 6

Case 6 involved a 2-year-old boy who presented with vomiting (Fig. 7).

Discussion—When evaluating calcifications, location and morphologic findings can offer clues as to the cause, with patient age and symptoms helping to further narrow the differential diagnosis. For example, in neonates, calcifications that are seen diffusely within the peritoneal cavity (distributed over the liver and the right upper quadrant or seen peripherally around a peritoneal pseudocyst) suggest in utero bowel perforation with subsequent meconium peritonitis or meconium pseudocyst formation [39]. When more focal triangular-shaped calcifications are noted in the region of the adrenal gland, a remote adrenal hemorrhage should be considered and is generally seen in neonates or in early childhood. When focal calcifications project over the kidneys, the bladder, or the expect-
Errors on Abdominal Radiographs of Pediatric Patients

of a malpositioned umbilical venous catheter used for total parenteral nutrition; therefore, knowledge of the expected course and tip position is critical [44].

Complications of abnormal umbilical venous catheter placement may include subcapsular hematoma, hepatic fluid collections or abscess, parenchymal necrosis, laceration, and biliary venous fistula. Thrombosis, a complication that can occur even when the umbilical venous catheter is correctly positioned, may be silent or may present acutely with distal lower limb swelling and thrombocytopenia [45]. Once calcified, a thrombus can be detected on a radiograph or by sonography, and it is often seen along the expected course of the umbilical venous catheter in the right upper quadrant [43].

Teaching point—Unlike in adults, in whom soft-tissue calcifications are often related to senescent changes or incidental findings, abdominal calcifications are frequently associated with pathology in pediatric patients and often require further investigation. As such, both their presence and location should be documented.

Bones

Although abdominal radiographs generally are not obtained for evaluation of the skeleton, evaluation of the included ribs, lumbosacral spine, and pelvis should be an integral part of image interpretation. Congenital and developmental abnormalities are often identified in the neonatal and pediatric population [12], with unsuspected bony malignancies and infection occasionally revealed. The radiologist must be familiar with entities that are unique to children and their typical radiographic findings.

Case 8

Case 8 involved a 12-year-old girl who had intermittent right-sided flank pain for 3 months (Fig. 9).

Discussion—Bone pain in the pediatric population is common and frequently benign. Common pathologic causes of bone pain in children include trauma and infection, as well as neoplasm or neoplastic-like processes, many of which can have overlapping symptoms and imaging characteristics [46].

Diagnosis may be challenging, given confounding symptoms and the difficulty in obtaining a detailed history from young children. As such, imaging is often requested to supplement clinical history, physical examination, and laboratory tests. In the setting of vague symptoms and referred pain, a chest or abdominal radiograph is often the first imaging study obtained. Visualized bony structures should be evaluated for integrity as well as for the presence of lytic or sclerotic bony lesions or simply abnormal bone density.

Ewing sarcoma of bone is one of the most common primary bone malignancies in childhood, second only to osteosarcoma [47]. Originally described by James Ewing in 1921, it is part of the Ewing sarcoma family of tumors, which includes tumors originating in soft tissue that were previously known as primitive neuroectodermal tumor as well as Askin tumors, which are a group of cytogenetically linked cancers [48].

The presenting symptoms will be variable and will depend on tumor location, but they are commonly insidious and of prolonged duration [49]. Fever and an elevated erythrocyte sedimentation rate may mimic infection, while in fact representing a harbinger of advanced local disease and metastases [48].

On radiographs, destructive or permeative intramedullary changes with ill-defined borders are common findings, although the lesion may also have a mixed lytic-sclerotic or entirely sclerotic appearance. An associated aggressive, lamellated, or spiculated periosteal reaction and soft-tissue mass are also frequently observed, with the latter often out of proportion to the degree of bone destruction observed [42, 46, 48, 49]. Ewing sarcoma may infrequently present with subtle changes in bone density or even without abnormal osseous radiographic findings, despite the large size of the tumor.

The major differential considerations for a lytic aggressive bone lesion include osteosarcoma, infection, and Langerhans cell histiocytosis, all of which require prompt diagnostic consultation for optimal treatment [48, 49].

Teaching point—The skeleton should be scrutinized on abdominal radiographs because osseous pathology may present with referred abdominal or pelvic pain, and abdominal radiography may be the first imaging study performed. A wide spectrum of bony findings may be encountered, ranging from subtle changes in bone mineralization with minimal lucencies or sclerosis to aggressive bony lesions, which may represent an underlying infectious or neoplastic process.

Case 9

Case 9 involved a 14-week-old boy who was born prematurely and who had undergone bowel resection for necrotizing enterocolitis (Fig. 10).

Discussion—Developmental dysplasia of the hip (DDH) refers to the spectrum of abnormalities related to abnormal growth and development of the hip, whether involving the femoral head, the acetabulum, or both. The term encompasses all causes of dysplasia, subluxation, or frank dislocation, and the condition may be congenital (in which case it is known as primary DDH and is considered most common) or developmental (in which case it is known as teratologic DDH and is related to underlying neurologic, connective tissue, or syndromic causes) [50].

The overall incidence of DDH ranges from one to five cases per 1000 live births, although this number increases with certain predisposing factors, including, but not limited to, breech presentation, female sex, oligohydramnios, firstborn status, and positive family history [51–53].

Although DDH is considered highly treatable when caught early, a missed or late diagnosis is often challenging to manage and can lead to significant disability [51]. However, modes of screening remain controversial, with some experts advocating universal ultrasound for neonates, while others recommend a thorough history and physical examination as the primary tool, reserving imaging for cases for which risk factors or clinical findings warrant its use [51, 52, 54]. According to the 2009 American College of Radiology Appropriateness Criteria, evaluation for DDH should occur at every infant visit during the first year of life, where inquiry into risk factors and a physical examination, including the Ortolani and Barlow maneuvers, will help determine whether further assessment is warranted [55].

Radiographs are thought to have limited value in the evaluation of mild dysplasia early in postnatal life because the femoral heads are composed nearly entirely of radiolucent cartilage up until 4–6 months of age. Although frank dislocation may be obvious, subtle cases of dysplasia may be suggested by the asymmetric size or position of the femoral head ossification centers. In cases of bilateral hip dysplasia, the radiologist will need to rely on other findings for diagnosis [55]. If dysplasia is suspected but ossified femoral heads are not yet present, ultrasound is the diagnostic tool of choice for infants younger than 6 months [56].

Teaching point—Assessment of the hip joints on abdominal radiographs is important, particularly in younger nonambulatory children in whom hip subluxation may be not be evident clinically.
Case 10
Case 10 involved a 6-month-old boy who had constipation since birth (Fig. 11).

Discussion—Functional constipation, or constipation without known cause, is thought to affect 3% of the pediatric population worldwide, with up to 40% of patients presenting in the first year of life [57]. Although most affected children fall into this idiopathic category, a thorough clinical history and physical examination may reveal an underlying disorder that is not always readily apparent at birth [57, 58].

The term “sacral agenesis” applies to the congenital absence of all or part of the sacrum. When isolated, it has been reported to occur in the setting of maternal diabetes, although a cause often cannot be determined. Association with certain syndromes, such as VACTERL (vertebral anomalies, anal atresia, cardiac abnormalities, tracheoesophageal fistula, with or without esophageal atresia, and renal and limb anomalies) and OEIS (omphalocele, exstrophy of the cloaca, imperforate anus, and spinal defects), has also been well established. An autosomal dominant form of sacral agenesis exists as well, with its most severe phenotype including complete absence of the sacrum or a hemisacrum, presacral mass, and anorectal malformation [59, 60]. Approximately 300 cases of this triad, first described in 1981 by Currarino and colleagues [60], have since been reported in the literature. The current literature suggests that Currarino syndrome may be a more appropriate term because additional anomalies of the urogenital and Müllerian duct systems are often present; although less common, concomitant Hirschsprung disease has also been reported [60, 61]. Other frequent associations include spinal dysraphism and tethering of the spinal cord [62]. Depending on the severity of anomalies, patients may present with anorectal malformation at birth or with bowel obstruction, urinary retention, or incontinence later in childhood [62].

As a general rule, five ossified sacral segments are present at birth in a term neonate and can be well visualized on radiography [63]. With Currarino syndrome, however, the so-called scimitar sacrum is often seen, with preservation of the first sacral segment and sickle- or crescent-shaped deformity of the more caudal sacrum evident on radiographs [59]. Spinal ultrasound can be obtained until the patient is 4 months of age and may show abnormal or absent sacral and coccygeal ossification centers as well as a cystic or solid presacral mass. The conus may also be low lying. MRI will better evaluate any presacral lesion as well as the extent of any underlying dysraphism, while also confirming the location of the conus.

Teaching point—When a child undergoes abdominal radiography for constipation, one must be certain to assess sacral integrity.

Conclusion
Radiography is frequently used for children who have indications similar to those seen in adults, albeit with a host of unique potential pathologies. A comprehensive understanding of the anatomy is requisite for identifying subtle extraluminal air and abdominal masses. In addition, identifying congenital anomalies and sequelae of in utero insults is helpful in directing further care. Last, it is important to remember that abnormalities in the upper abdomen are frequently overlooked on chest radiographs. We offer these examples of diagnostic errors as a framework by which one may implement a more systematic interpretive approach and may potentially reduce the frequency and impact of these pitfalls in the future.

References
2. Makary MA, Daniel M. Medical error—the third leading cause of death in the US. BMJ 2016; 353:i2139
2-year-old girl with 4- to 5-month history of intermittent fevers and one-week history of abdominal distention.

A, Initial abdominal radiograph obtained at outside institution missed focal paucity of bowel gas (arrows) with medial displacement of bowel loops in left upper abdomen. Subtle calcifications in this region were difficult to visualize. Subsequent ultrasound examination (not shown) revealed left-sided abdominal mass.

B, Contrast-enhanced CT obtained for staging shows large multilobulated mass (arrows) with linear calcifications in left renal fossa. Mass invaded left kidney and completely replaced left renal parenchyma. Pathologic analysis revealed clear cell sarcoma of kidney.

4-week-old boy (born prematurely at 27 weeks of gestation) who had history of heart block requiring pacemaker and of respiratory failure. Patient presented with increased fussiness.

A, Abdominal radiograph shows right inguinal hernia containing gas-filled bowel loops (arrows), which initially was not reported. Pacemaker is also seen.

B, Color Doppler ultrasound image obtained 1 day after radiograph in A because of clinical concern for incarcerated hernia shows large right inguinal hernia containing small bowel loops (arrows) with normal perfusion on color-flow imaging, which was nonreducible in real-time imaging. Right testicle (arrowhead) shows normal perfusion, and small hydrocele is also present.
Errors on Abdominal Radiographs of Pediatric Patients

Fig. 3—21-year-old woman with history of acute lymphoblastic leukemia after bone marrow transplantation who presented with fever and cough. A, Initial chest radiograph shows pneumatosis (arrows) along right colon at hepatic flexure, which was initially missed. B, Abdominal radiograph obtained 2 days after radiograph in A because of abdominal pain in setting of persistent cough. Image shows increased extent of pneumatosis (arrows) along visualized right and proximal transverse colon. Pneumatosis resolved with antibiotics and bowel rest.

Fig. 4—6-week-old boy with tetralogy of Fallot after placement of Blalock-Taussig shunt with increased irritability that raised clinical concern for possible pneumatosis related to necrotizing enterocolitis, given recent cardiac surgery. A, Abdominal radiograph obtained with patient in supine position shows unusual low position of weighted tip of enteric tube projected over sacrum at S2, thought to reflect duodenal distortion related to enteric tube presence. Lucency (arrows) in right upper quadrant representing pneumoperitoneum was not described. B and C, Subsequent cross-table lateral (B) and left lateral decubitus (C) abdominal radiographs were obtained a few hours after radiograph shown in A, in setting of increased abdominal distention and fever after enteric tube removal. Images show increased pneumoperitoneum (arrows, B) with interval development of portal venous gas (arrowheads, B and C). Trace subcutaneous gas was also noted along anterior abdominal wall.
Fig. 5—11-year-old girl with abdominal distention and lethargy occurring 1 month after total colectomy was performed for ulcerative colitis.

A, Abdominal radiograph obtained with patient in supine position shows large-volume ascites with bulging flanks (arrowheads), diffuse ground-glass appearance within abdomen, and paucity of bowel gas with centralization of gas-filled bowel loops, which initially were missed. Hellmer sign is present, with medial displacement of lateral edge of liver (arrows).

B, Follow-up CT image confirmed radiographic findings. Intraoperative evaluation revealed more than 5 L of chylous ascites.

Fig. 6—13-year-old girl with history of constipation and suprapubic pain.

A, Abdominal radiograph obtained with patient in supine position shows paucity of bowel gas with centralization of bowel loops. Prominent bulging of flanks (arrowheads) with medial displacement of liver edge (Hellmer sign) (arrows) is also shown. Findings were suggestive of large-volume ascites, and ultrasound examination was performed (not shown), which confirmed this finding and also showed multiple abdominal and pelvic soft-tissue masses.

B, Coronal contrast-enhanced CT image of abdomen and pelvis shows multiple heterogeneous soft-tissue masses (arrow), consistent with peritoneal implants, in lower abdomen and pelvis as well as along diaphragm bilaterally. Large-volume ascites were again shown. Pathologic findings revealed desmoplastic small round-cell tumor.
Errors on Abdominal Radiographs of Pediatric Patients

Fig. 7—2-year-old boy who presented with vomiting.

A, Lateral abdominal radiograph obtained as part of abdominal series shows multiple distended bowel loops suggestive of partial obstruction, which resulted from large ileocolic intussusception subsequently diagnosed on abdominal ultrasound. However, small retroperitoneal calcification projecting anterior to T12 vertebral body (arrow) was difficult to identify prospectively.

B, Patient presented 2 years later with right lower quadrant pain and constipation. Abdominal radiograph obtained with patient in supine position shows large ovoid well-defined left upper quadrant density (arrow) concerning for calcified mass. Abdominal ultrasound examination (not shown) confirmed presence of large left retroperitoneal mass, which was pathologically proven to be neuroblastoma.

C, Large calcified components (arrows) of left retroperitoneal mass centered in region of left adrenal gland were seen on contrast-enhanced CT obtained for staging.

Fig. 8—11-day-old boy with history of repaired congenital diaphragmatic hernia.

A, Chest radiograph shows irregular ill-defined calcification (arrow) in upper abdomen to right of L1 vertebral body, which initially was not detected.

B, Color Doppler ultrasound image of liver and proximal portal veins shows complete occlusion of left portal vein with calcified shadowing thrombus. In retrospect, patient had umbilical venous catheter in first days of life, which was presumed cause of thrombosis.
Fig. 9—12-year-old girl with intermittent right-sided flank pain for 3 months.
A, Abdominal radiograph shows subtle lytic lesion (arrow) involving right L3 pedicle, which initially was missed on radiographs obtained at outside institution.
B, Axial contrast-enhanced T1-weighted MR image for continued pain shows enhancing bony lesion (arrow) with small adjacent soft-tissue component involving right aspect of L3 vertebral body that extends into right L3 pedicle. Pathologic examination showed Ewing sarcoma. Horseshoe kidney was incidentally noted.

Fig. 10—14-week-old boy born prematurely who had undergone bowel resection for necrotizing enterocolitis. Abdominal radiograph obtained with patient in supine position shows physiologic periosteal reaction along bilateral femoral shafts. Bilateral hip subluxation was not identified prospectively. Surgical clips were present in right lower quadrant at site of bowel resection. Ultrasound examination performed 1 week later (not shown) showed bilateral hip dysplasia (right hip affected more than left hip), as evidenced by abnormally low alpha angles (<60°) and deficient acetabular coverage (<50%).
Errors on Abdominal Radiographs of Pediatric Patients

Fig. 11—6-month-old boy with constipation since birth.
A, Frontal abdominal radiograph shows right hemisacral agenesis with crescent-shaped defect (arrows) consistent with scimitar sacrum, which was not identified on initial interpretation.
B, Spinal T2-weighted MR image obtained because of concern for tethered cord shows low-lying cord with conus at L4 level. Multiloculated cystic presacral lesion (arrowheads) was seen originating from caudal aspect of thecal sac and herniating through right sacral defect (arrow), with imaging features suggesting meningocele. Mass caused significant anterior displacement of rectosigmoid colon. Distal cord syringohydromyelia was also noted.
C, Subsequently obtained 3D reformatted CT image of sacrum better shows hemisacral agenesis (arrows).